makalah sistem koloid



Pengertian Koloid
Istilah koloid pertama kali diutarakan oleh seorang ilmuwan Inggris, Thomas Graham, sewaktu mempelajari sifat difusi beberapa larutan melalui membran kertas perkamen. Graham menemukan bahwa larutan natrium klorida mudah berdifusi sedangkan kanji, gelatin, dan putih telur sangat lambat atau sama sekali tidak berdifusi. Zat-zat yang sukar berdifusi tersebut disebut koloid.
Tahun 1907,  Ostwald, mengemukakan istilah sistem terdispersi bagi zat yang terdispersi dalam medium pendispersi. Analogi dalam larutan, fase terdispersi adalah zat terlarut, sedangkan medium pendispersi adalah zat pelarut. Sistem koloid termasuk salah satu sistem dispersi. Sistem dispersi lainnya adalah larutan dan suspensi.   Larutan merupakan sistem dispersi yang ukuran partikelnya sangat kecil, sehingga tidak dapat dibedakan antara partikel dispersi dan pendispersi. Sedangkan suspensi merupakan sistem dispersi dengan partikel berukuran besar dan tersebar merata dalam medium pendispersinya.Sistem Koloid adalah suatu bentuk campuran yang keadaannya terletak antara larutan dan suspensi (campuran kasar). Secara makroskopis koloid tampak homogen, tetapi secara mikroskopis bersifat heterogen. Campuran koloid umumnya bersifat stabil dan tidak dapat disaring. Ukuran partikel koloid terletak antara 1 nm-10 nm.
Koloid merupakan campuran 2 fase yang terdiri dari fase terdispersi dan medium pendispersi. Fase terdispersi merupakan zat yang didispersikan dan bersifat diskontinu (terputus-putus), sedangkan medium untuk mendispersikan disebut medium pendispersi dan berisfat kontinu. Adapun perbandingan sifat larutan, koloid dan suspensi adalah sebagai berikut:
 










Larutan
(Dispersi Molekuler)
Koloid
(Dispersi Koloid)
Suspensi
(Dispersi Kasar)
Contoh: larutan gula dalam air
Contoh: campuran susu dengan air.
Contoh: campuran tepung terigu dengan air.
  • Homogen, tak dapat dibedakan, walaupun menggunakan mikroskop ultra.
  • Semua partikel berdimensi (panjang, lebar, atau tebal) < 1nm.
  • Satu fase
  • Stabil
  • Tidak dapat disaring
  • Secara makroskopis bersifat homogen, tetapi heterogen jika diamati dengan mikroskop ultra.
  • Partikel berdimensi antara 1 nm-100 nm.
  • Dua fase
  • Pada umumnya stabil.
  • Tidak dapat disaring, kecuali dengan penyaring ultra.
  • Heterogen
  • Salah satu atau semua dimensi partikel >100 nm.
  • Dua fase
  • Tidak stabil
Jenis-Jenis Koloid
Telah kita ketahui bahwa sistem koloid terdiri atas dua fasa, yaitu fasa terdispersi dan fasa pendispersi (medium dispersi).  Sistem koloid dapat dikelompokkan berdasarkan jenis fasa terdispersi dan fasa pendispersinya.
Koloid yang mengandung fasa terdispersi padat disebut  sol. Jadi, ada tiga jenis sol, yaitu sol padat (padat dalam padat), sol cair (padat dalam cair), dan sol gas (padat dalam gas). Istilah sol biasa digunakan untuk menyatakan sol cair, sedangkan sol gas lebih dikenal sebagai  aerosol (aerosol padat). Koloid yang mengandung fasa terdispersi cair disebut emulsi. Emulsi juga ada tiga jenis, yaitu emulsi padat (cair dalam padat), emulsi cair (cair dalam cair), dan emulsi gas (cair dalam gas).  Istilah emulsi biasa digunakan untuk menyatakan emulsi cair, sedangkan emulsi gas juga dikenal dengan nama  aerosol  (aerosol cair). Koloid yang mengandung fasa terdispersi gas disebut  buih. Hanya ada dua jenis buih, yaitu buih padat dan buih cair. Mengapa tidak ada buih gas? Istilah buih biasa digunakan untuk menyatakan buih cair. Dengan demikian ada 8 jenis koloid, seperti yangtercantum pada tabel 9.2.
No.
Fase Terdispersi
Medium Pendispersi
Nama Koloid
Contoh
1.
Padat
Cair
Sol
Sol emas, agar-agar, jelly, cat, tinta, air sungai
2.
Padat
Gas
Aerosol padat
Asap, debu padat
3.
Padat
Padat
Sol padat
Paduan logam, kaca berwarna
4.
Cair
Gas
Aerosol
Kabut, awan
5
Cair
Cair
Emulsi
Santan, susu, es krim, krim, lotion, mayonaise
6.
Cair
Padat
Emulsi padat
Keju, mentega, mutiara
7.
Gas
Cair
Buih, busa
Busa sabun
8.
Gas
Padat
Busa padat
Karet busa, batu apung
a.    Aerosol
http://fauzanagazali.files.wordpress.com/2011/05/fog1.jpg?w=240&h=160Sistem koloid dari partikel padat atau cair yang terdispersi dalam gas disebut aerosol. Jika zat yang terdispersi berupa zat padat disebut aerosol padat, jika zat yang terdispersi berupa zat cair disebut aerosol cair. Aerosol padat contohnya: asap dan debu di udara, aerosol cair contohnya:  kabut dan awan.
http://fauzanagazali.files.wordpress.com/2011/05/asap-kereta.jpg?w=150&h=112
Dewasa ini banyak produk dibuat dalam bentuk aerosol, seperti semprot rambut (hair spray), semprot obat nyamuk, parfum, cat semprot, dan lain-lain. Untuk menghasilkan aerosol diperlukan suatu bahan pendorong (propelan aerosol).  Contoh bahan pendorong yang banyak digunakan adalah senyawa  klorofluorokarbon  (CFC) dan karbon dioksida.





b.   Sol
http://fauzanagazali.files.wordpress.com/2011/05/20071219-tintas.jpg?w=144&h=116
Sistem koloid dari partikel padat yang terdispersi dalam zat cair disebut sol. Koloid jenis sol banyak ditemui dalam kehidupan sehari-hari contohnya: sol sabun, sol detergen, sol kanji, tinta tulis, air sungai berlumpur dan cat.
http://fauzanagazali.files.wordpress.com/2011/05/milk.jpg?w=150&h=137c.   Emulsi




Sistem koloid dari zat cair yang terdispersi dalam zat cair disebut emulsi.  Syarat terjadinya emulsi ini adalah kedua zat cair tidak saling melarutkan. Emulsi dapat digolongkan menjadi dua bagian, yaitu emulsi minyak dalam air atau emulsi air dalam minyak. Contoh emulsi minyak dalam air adalah santan, susu, dan lateks. Contoh emulsi air dalam minyak adalah minyak ikan, minyak bumi.
Emulsi terbentuk karena adanya zat pengemulsi (emulgator), contoh emulgator adalah sabun yang dapat mengemulsikan minyak dalam air. Contoh emulgator lainnya adalah kasein dalam susu dan kuning telur dalam mayonaise.
d.    Buih
http://fauzanagazali.files.wordpress.com/2011/05/putih-buih-ombak-di-pantai-zoom2.jpg?w=150&h=112 




Sistem koloid dari gas yang terdispersi dalam zat cair disebut buih. Seperti halnya dengan emulsi, untuk menstabilkan  buih diperlukan zat pembuih, misalnya sabun, deterjen, dan protein. Buih dapat dibuat dengan mengalirkan suatu gas ke dalam zat cair yang mengandung pembuih. Buih digunakan pada berbagai proses, misalnya buih sabun pada pengolahan bijih logam, pada alat pemadam kebakaran, dan lain-lain. Adakalanya buih tidak dikehendaki. Zat-zat yang dapat memecah atau mencegah buih,antara lain eter, isoamil alkohol, dan lain-lain.
Buih mempunyai fase terdispersi gas. Buih terdiri atas:
1)buih padat dengan medium pendispersi padat, contoh batu apung, karet busa, dan styrofoam;
2)buih cair atau buih dengan medium pendispersi cair, contoh buih sabun dan putih telur.
e.  Gel
http://fauzanagazali.files.wordpress.com/2011/05/pandan-custard-agar-agar1.jpg?w=300&h=231 





Koloid yang setengah kaku (antara padat dan cair) disebut gel. Contoh : agar-agar, lem kanji, selai, gelatin, gel sabun, gel silika. Gel dapat terbentuk dari suatu sol yang mengadsorbsi medium pendispersinya, sehingga terjadi koloid yang agak padat.
Sifat-sifat Koloid
a.  Efek Tyndall
Jika seberkas cahaya dilewatkan pada suatu sistem koloid, maka cahaya tersebut akan dihamburkannya sehingga berkas cahaya tersebut akan kelihatan. Sedangkan jika cahaya dilewatkan pada larutan sejati maka cahaya tersebut akan diteruskannya . Sifat koloid yang seperti inilah yang dikenal dengan efek tyndall dan sifat ini dapat digunakan untuk membedakan koloid dengan larutan sejati. Gejala ini pertama kali ditemukan oleh Michael Faradaykemudian diselidiki lebih lanjut oleh  John Tyndall (1820 – 1893), seorang ahli Fisikabangsa Inggris.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgH1RhBlKBDbxIYx0sGXsUUfGR4bgvhKWuxk7vV0zteniFE1J0dkZ5upt8UNMwr7wqvbOMEpdJlOz1BIaTPKRod1NblNyoq_NKuFjuO1f6MUQ-S47DIPmggPmx9_dUFbV1JxWp2TKoew9AW/s200/20090121223555.jpghttp://fauzanagazali.files.wordpress.com/2011/05/picture12.jpg?w=480&h=223

Efek Tyndall juga dapat menjelaskan mengapa langit pada siang hari berwarna biru sedangkan pada saat matahari terbenam, langit di ufuk barat berwarna jingga atau merah. Hal itu disebabkan oleh penghamburan cahaya matahari oleh partikel koloid di angkasa dan tidak semua frekuensi dari sinar matahari dihamburkan dengan intensitas sama.
Jika intensitas cahaya yang dihamburkan berbanding lurus dengan frekuensi, maka pada waktu siang hari ketika matahari melintas di atas kita frekuensi paling tinggi (warna biru) yang banyak dihamburkan, sehingga kita melihat langit berwarna biru. Sedangkan ketika matahari terbenam, hamburan frekuensi rendah (warna merah) lebih banyak dihamburkan,  sehingga kita melihat langit berwarna jingga atau merah.
Gejala efek tyndall yang dapat diamati dalam kehidupan sehari-hari adalah sebagai berikut:
-          Sorot lampu mobil pada malam yang berkabut
-          Sorot lampu proyektor dalam gedung bioskop yang berasap dan berdebu
-          Berkas sinar matahari melalui celah pohon-pohon pada pagi yang berkabut
b.    Gerak Brown





Gerak brown merupakan gerak patah-patah (zig-zag) partikel koloid yang terus menerus dan
hanya dapat diamati dengan mikroskop ultra. Gerak brown terjadi sebagai akibat tumbukan yang tidak seimbang dari molekul-molekul medium terhadap partikel koloid.Dalam suspensi tidak terjadi gerak Brown karena ukuran partikel cukup besar, sehingga tumbukan yang dialaminya setimbang. Partikel zat terlarut juga mengalami gerak Brown, tetapi tidak dapat diamati. Semakin tinggi suhu, maka gerak brown yang terjadi juga semakin cepat, karena energi molekul medium meningkat sehingga menghasilkan tumbukan yang lebih kuat.
Gerak Brown merupakan faktor penyebab stabilnya partikel koloid dalam medium dispersinya. Gerak brown yang terus menerus dapat mengimbangi gaya gravitasi sehingga partikel koloid tidak mengalami sedimentasi (pengendapan).
c.   Elektroforesis
http://fauzanagazali.files.wordpress.com/2011/05/elektroforesis.gif?w=150&h=101
http://fauzanagazali.files.wordpress.com/2011/05/elektroforesisa4.jpg?w=123&h=150Partikel koloid dapat bergerak dalam medan listrik karena partikel koloid bermuatan listrik. Pergerakan partikel koloid dalam medan listrik ini disebut elektroforesis. Jika dua batang elektrode dimasukkan kedalam sistem koloid dan kemudian dihubungkan dengan sumber arus searah, maka partikel koloid akan bergerak kesalah satu elektrode tergantung pada jenis muatannya. Koloid bermuatan negatif akan bergerak ke anode (elektrode positif) sedang koloid bermuatan positif akan bergerak ke katode (elektrode negatif).




Elektroforesis dapat digunakan untuk mendeteksi muatan partikel koloid. Jika partikel koloid berkumpul dielektrode positif berarti koloid bermuatan negatif, jika partikel koloid berkumpul dielektrode negatif bearti koloid bermuatan positif. Peristiwa elektroforesis ini sering dimanfaatkan kepolisian dalam identifikasi/tes DNA pada jenazah korban pembunuhan/ jenazah tak dikenal

d.   Adsorpsi





Adsorpsi  adalah peristiwa di mana suatu zat menempel pada permukaan zat lain, seperti http://fauzanagazali.files.wordpress.com/2011/05/adsorbsi.jpg?w=150&h=115
ion H+ dan OH-  dari medium pendispersi. Untuk berlangsungnya adsorpsi, minimum harus ada dua macam zat, yaitu zat yang tertarik disebut adsorbat, dan zat yang menarik disebut  adsorban. Apabila terjadi penyerapan ion ada permukaan partikel koloid maka partikel koloid dapat bermuatan listrik yang muatannya ditentukan oleh muatan ion-ion yang mengelilinginya.
http://fauzanagazali.files.wordpress.com/2011/05/gerak-brown2.jpg?w=150&h=115
Partikel koloid mempunyai kemampuan menyerap ion atau muatan listrik pada permukaannya. Oleh karena itu partikel koloid bermuatan listrik. Penyerapan pada permukaan ini disebut dengan adsorpsi. Contohnya sol Fe(OH)3 dalam air mengadsorpsi ion positif sehingga bermuatan positif dan sol As2S3 mengadsorpsi ion negatif sehingga bermuatan negatif. Pemanfaatan sifat adsorpsi koloid dalam kehidupan antara lain dalam proses pemutihan gula tebu, dalam pembuatan norit (tablet yang terbuat dari karbon aktif) dan dalam proses penjernihan air dengan penambahan tawas.

e.   Koagulasi
Koagulasi adalah peristiwa pengendapan atau penggumpalan koloid. Koloid distabilkan oleh muatannya. Jika muatan koloid dilucuti atau dihilangkan, maka kestabilannya akan berkurang sehingga dapat menyebabkan koagulasi atau penggumpalan. Pelucutan muatan koloid dapat terjadi pada sel elektroforesis atau jika elektrolit ditambahakan ke dalam system koloid. Apabila arus listrik dialirkan cukup lama kedalam sel elektroforesis, maka partikel koloid akan digumpalkan ketika mencapai electrode. Koagulasi koloid karena penambahan elektrolit terjadi karena koloid bermuatan positif menarik ion negative dan koloid bermuatan negative menarik ion positif. Ion-ion tersebut akan membentuk selubung lapisan kedua. Jika selubung itu terlalu dekat, maka selubung itu akan menetralkan koloid sehingga terjadi koagulasi.
Beberapa contoh peristiwa koagulasi dalam kehidupan sehari-hari adalah:
-          Pembentukan delta di muara sungai karena koloid tanah liat dalam air sungai mengalami koagulasi ketika bercampur dengan elektrolit dalam air laut.
-          Karet dalam latek digumpalkan dengan menambahkan asam formiat
-          Lumpur koloidal dalam air sungai dapat digumpalkan dengan menambahkan tawas
-          Asap atau debu pabrik dapat digumpalkan dengan alat koagulasi listrik dari cottrel.
Koloid Pelindung
Ada koloid yang bersifat melindungi koloid lain supaya tidak mengalami koagulasi. Koloid semacam ini disebut koloid pelindung. Koloid pelindung ini membentuk lapisan di sekeliling partikel koloid yang lain sehingga melindungi muatan koloid tersebut. Koloid pelindung ini akan membungkus partikel zat terdispersi, sehingga tidak dapat lagi mengelompok.
Contoh pemanfaatan koloid pelindung adalah sebagai berikut:
1.         Pada pembuatan es krim digunakan gelatin untuk mencegah pembentukan Kristal besar atau gula
  1.  Cat dan tinta dapat bertahan lama karena menggunakan suatu koloid pelindung.
  2.  Zat-zat pengemulsi seperti sabun dan detergen juga tergolong koloid pelindung.


Dialisis
Untuk stabilitas koloid diperlukan sejumlah muatanion suatu elektrolit. Akan tetapi, jika penambahan elektrolit ke dalam sistem koloid terlalu banyak, kelebihan ini dapat mengendapkan fase terdispersi dari koloid itu. Hal ini akan mengganggu stabilitas sistem  koloid tersebut. Untuk mencegah kelebihan elektrolit, penambahan elektrolit dilakukan  dengan cara dialisis.
http://fauzanagazali.files.wordpress.com/2011/05/dialisis.jpg?w=366&h=167
Dialisis merupakan proses pemurnian koloid dengan membersihkan atau menghilangkan ion-ion pengganggu menggunakan suatu kantong yang terbuat dari selaput semipermiabel.  Caranya, sistem koloid dimasukkan ke dalam kantong semipermeabel, dan diletakkan dalam air. Selaput semipermeabel ini hanya dapat dilalui oleh ion-ion, sedangkan partikel koloid tidak dapat melaluinya, dengan demikian akan diperoleh koloid yang murni. Ion-ion yang keluar melalui selaput semipermeabel ini kemudian larut dalam air. Dalam proses dialisis hilangnya ion-ion dari sistem koloid dapat dipercepat dengan menggunakan air yang mengalir. Peristiwa dialisis ini diaplikasikan dalam proses pencucian darah di dunia kedokteran.

Koloid Liofil dan Liofob
Koloid yang memiliki medium dispersi cair dibedakan atas koloid liofil dan koloid liofob. Suatu koloid disebut koloid liofil apabila terdapat gaya tarik-menarik yang cukup besar antara zat terdispersi dengan mediumnya. Liofil berarti suka cairan (Yunani: lio = cairan, philia = suka). Sebaliknya, suatu koloid disebut koloid liofob jika gaya tarik-menarik tersebut tidak ada atau sangat lemah. Liofob berarti tidak suka cairan (Yunani: lio = cairan, phobia = takut atau benci). Jika medium dispersi yang dipakai adalah air, maka kedua jenis koloid di atas masing-masing disebut koloid hidrofil dan koloid hidrofob.
Contoh:
•Koloid hidrofil: sabun, detergen, agar-agar, kanji, dan gelatin.
•Koloid hidrofob: sol belerang, sol Fe(OH)3, sol-sol sulfida, dan sol-sol logam.
Koloid liofil/hidrofil lebih mantap dan lebih kental daripada koloid liofob/ hidrofob. Butir-butir koloid liofil/hidrofil membungkus diri dengan cairan/air mediumnya. Hal ini disebut solvatasi/hidratasi. Dengan cara itu butir-butir koloid tersebut terhindar dari agregasi (pengelompokan). Hal demikian tidak terjadi pada koloid liofob/hidrofob. Koloid liofob/hidrofob mendapat kestabilan karena mengadsorpsi ion atau muatan listrik. Sebagaimana telah dijelaskan bahwa muatan koloid menstabilkan sistem koloid.
Sol hidrofil tidak akan menggumpal pada penambahan sedikit elektrolit. Zat terdispersi dari sol hidrofil dapat dipisahkan dengan pengendapan atau penguapan. Apabila zat padat tersebut dicampurkan kembali dengan air, maka dapat membentuk kembali sol hidrofil. Dengan perkataan lain, sol hidrofil bersifat  reversibel. Sebaliknya, sol hidrofob dapat mengalami koagulasi pada penambahan sedikit elektrolit. Sekali zat terdispersi telah dipisahkan, tidak akan membentuk sol lagi jika dicampur kembali dengan air. Perbedaan sol hidrofil dengan sol hidrofob disimpulkan sebagai berikut.
http://fauzanagazali.files.wordpress.com/2011/05/perbandingan-koloid-suspensi-dan-larutan2.png?w=480&h=245
Peranan Koloid dalam Kehidupan Sehari-hari
a. Mengurangi polusi udara
Gas buangan pabrik yang mengandung asap dan partikel berbahaya dapat diatasi dengan menggunakan alat yang disebut pengendap cottrel. Prinsip kerja alat ini memanfaatkan sifat muatan dan penggumpalan koloid sehingga gas yang dikeluarkan ke udara telah bebas dari asap dan partikel berbahaya
Asap dari pabrik sebelum meninggalkan cerobong asap dialirkan melalui ujung-ujung logam yang tajam dan bermuatan pada tegangan tinggi (20.000 sampai 75.000 volt).  Ujung-ujung yang runcing akan mengionkan molekul-molekul dalam udara. Ion-ion tersebut akan diadsorpsi oleh partikel asap dan menjadi bermuatan. Selanjutnya, partikel  bermuatan itu akan tertarik dan diikat pada elektrode yang lainnya. Pengendap Cottrel ini banyak digunakan dalam industri untuk dua tujuan, yaitu mencegah polusi udara oleh buangan beracun dan memperoleh kembali debu yang berharga (misalnya debu logam).
b. Penggumpalan lateks
Getah karet dihasilkan dari pohon karet atau hevea. Getah karet merupakan sol, yaitu dispersi koloid fase padat dalam cairan. Karet alam merupakan zat padat yang molekulnya sangat besar (polimer). Partikel karet alam terdispersi sebagai partikel koloid dalam sol  getah karet. Untuk mendapatkan karetnya, getah karet harus dikoagulasikan agar karet
menggumpal dan terpisah dari medium pendispersinya. Untuk mengkoagulasikan getah  karet, biasanya digunakan asam formiat; HCOOH atau asam asetat; CH3COOH. Larutan asam pekat itu akan merusak lapisan pelindung yang mengelilingi partikel karet. Sedangkan ion-ion H+-nya akan menetralkan muatan partikel karet sehingga karet akan menggumpal.
Selanjutnya, gumpalan karet digiling dan dicuci lalu diproses lebih lanjut sebagai lembaran yang disebut sheet atau diolah menjadi karet remah (crumb rubber). Untuk keperluan lain,  misalnya pembuatan balon dan karet busa, getah karet tidak digumpalkan melainkan dibiarkan dalam wujud cair yang disebut lateks. Untuk menjaga kestabilan sol lateks, getah karet dicampur dengan larutan amonia; NH3. Larutan amonia yang bersifat basa melindungi partikel karet di dalam sol lateks dari zat-zat yang bersifat asam sehingga sol
tidak menggumpal.
c. Membantu pasien gagal ginjal
Proses dialisis untuk memisahkan partikel-partikel koloid dan zat terlarut merupakan dasar bagi pengembangan dialisator. Penerapan dalam kesehatan adalah sebagai mesin pencuci darah untuk penderita gagal ginjal. Ion-ion dan molekul kecil dapat melewati selaput semipermiabel dengan demikian pada akhir proses pada kantung hanya tersisa  koloid saja. Dengan melakukan cuci darah yang memanfaatkan prinsip dialisis koloid, senyawa beracun seperti urea dan keratin dalam darah penderita gagal ginjal dapat dikeluarkan. Darah yang telah bersih kemudian dimasukkan kembali ke tubuh pasien.
d. Penjernihan air
Untuk memperoleh air bersih perlu dilakukan upaya penjernihan air. Kadang-kadang air  dari mata air seperti sumur gali dan sumur bor tidak dapat dipakai sebagai air bersih jika tercemari. Air permukaan perlu dijernihkan sebelum dipakai. Upaya penjernihan air dapat dilakukan baik skala kecil (rumah tangga) maupun skala besar seperti yang dilakukan oleh Perusahaan Daerah Air Minum (PDAM). Pada dasarnya penjernihan air itu dilakukan  secara bertahap. Mula-mula mengendapkan atau menyaring bahan-bahan yang tidak larut
dengan saringan pasir. Kemudian air yang telah disaring ditambah zat kimia, misalnya tawas atau aluminium sulfat dan kapur agar kotoran menggumpal dan selanjutnya mengendap, dan kaporit atau kapur klor untuk membasmi bibit-bibit penyakit. Air yang  dihasilkan dari penjernihan itu, apabila akan dipakai sebagai air minum, harus dimasak  terlebih dahulu sampai mendidih beberapa saat lamanya.
Untuk memperjelas tentang penjernihan air perhatikan gambar 9.13 berikut!
http://fauzanagazali.files.wordpress.com/2011/05/penjernihan-air.jpg?w=480&h=217Proses pengolahan air tergantung pada mutu baku air (air belum diolah), namun pada  dasarnya melalui 4 tahap pengolahan. Tahap pertama adalah pengendapan, yaitu air baku dialirkan perlahan-lahan sampai benda-benda yang tak larut mengendap. Pengendapan ini  memerlukan tempat yang luas dan waktu yang lama. Benda-benda yang berupa koloid  tidak dapat diendapkan dengan cara itu.
Pada  tahap kedua, setelah suspensi kasar terendapkan, air yang mengandung koloid diberi zat yang dinamakan koagulan. Koagulan yang banyak digunakan adalah aluminium sulfat, besi(II)sulfat,     besi(III)klorida, dan klorinasi koperos (FeCl2Fe2(SO4)3). Pemberian koagulan selain untuk mengendapkan partikel-partikel koloid, juga untuk menjadikan  pH air sekitar 7 (netral). Jika pH air berkisar antara 5,5–6,8, maka yang digunakan adalah aluminium sulfat, sedangkan untuk senyawa besi sulfat dapat digunakan pada pH air 3,5–5,5.
Pada  tahap ketiga, air yang telah diberi koagulan mengalami proses pengendapan, benda-benda koloid yang telah menggumpal dibiarkan mengendap. Setelah mengalami pengendapan, air tersebut disaring melalui penyaring pasir sehingga sisa endapan yang masih terbawa di dalam air akan tertahan pada saringan pasir tersebut.
Pada  tahap terakhir, air jernih yang dihasilkan diberi sedikit air kapur untuk menaikkan pHnya, dan untuk membunuh bakteri diberikan kalsium hipoklorit (kaporit) atau klorin (Cl2).
e.  Sebagai deodoran
Deodoran mengandung aluminium klorida yang dapat mengkoagulasi atau mengendapkan protein dalam keringat.Endapan protein ini dapat menghalangi kerja kelenjer keringat sehingga keringat dan potein yang dihasilkan berkurang.
f. Sebagai bahan makanan dan obat
Ada zat-zat yang tidak larut dalam air sehingga harus dikemas dalam bentuk koloid sehingga mudah diminum. Contohnya obat dalam bentuk kapsul.
g. Sebagai bahan kosmetik
Ada berbagai bahan kosmetik kosmetik berupa padatan, tetapi lebih baik digunakan dalam bentuk cairan. Untuk itu biasanya dibuat berupa koloid dengan tertentu.
h. Sebagai bahan pencuci
Prinsip koloid juga digunakan dalam proses pencucian dengan sabun dan detergen. Dalam pencucian dengan sabun atau detergen, sabun/ detergen berfungsi sebagai emulgator. Sabun/detergen akan mengemulsikan minyak dalam air  sehingga kotoran-kotoran berupa lemak atau minyak dapat dihilangkan dengan cara pembilasan dengan air.
Pembuatan Koloid
a.  Cara kondensasi
Dengan cara kondensasi partikel larutan sejati bergabung menjadi partikel koloid. Cara ini dapat dilakukan melalui reaksi-reaksi kimia seperti reaksi redoks, hidrolisis, dekomposisi rangkap, atau dengan pergantian pelarut.
1)   Reaksi subtitusi
Misalnya larutan natrium tiosulfat direaksikan dengan larutan asam klorida , maka akan terbentuk belerang. Partikel belerang akan bergabung menjadi semakin besar sampai berukuran koloid sehingga terbentuk sel belerang. Seperti reaksi
Na2SO3(aq)+ 2HCl(aq) →2 NaCl(aq)+ H2O(l) + S(s)
2)   Reaksi Hidrolisis
Reaksi hidrolisis adalah reaksi suatu zat dengan air. Sol Fe(OH)3 dibuat melalui hidrolisis larutan FeCl3, yaitu dengan memanaskan larutan FeCl3. Hidrolisis larutan AlCl3 akan menghasilkan koloid Al(OH)3. Reaksinya adalah:
FeCl3(aq) + 3H2O(l) → Fe(OH)3(s) +3HCl(aq)
AlCl3(aq) + 3 H2O(l)  → Al(OH)3(s) + 3HCl(aq)
3)   Reaksi Redoks
Reaksi redoks adalah reaksi yang disertai perubahan bilangan oksidasi. Pembuatan sol belerang dari reaksi antara hidrogen sulfida (H2S) dengan belerang dioksida (SO2), yaitu dengan mengalirkan gas H2S kedalam larutan SO2
2H2S(g) + SO2(aq) → 2H2O(l) + 3S (s)

 4)   Reaksi Dekomposisi Rangkap
Contohnya adalah pembuatan sol As2S3 dengan mereaksikan larutan H3AsO3 dengan larutan H2S. Reaksinya adalah sebagai berikut:
2H3AsO3(aq) + 3H2S(aq) → As2S3(s) + 6H2O(l)
 5)   Penggantian Pelarut
Cara ini dilakukan dengan menggnti medium pendispersi sehingga fase terdispersi yang semula larut menjadi berukuran koloid. Misalnya larutan jenuh kalsium asetat jika dicampur dengan alcohol akan terbentuk suatu koloid berupa gel.
b.  Cara dispersi
       Dengan cara dispersi partikel kasar dipecah menjadi partikel koloid. Cara dispersi dapat dilakukan secara mekanik, peptisasi, atu dengan loncatan bunga listrik(busur bredig).
1) Cara mekanik
Dengan cara ini, butir-butir kasar  digerus dengan lumpang, sampai diperoleh tingkat kehalusan tertentu, kemudian diaduk dengan medium pendispersi. Contoh pembuatan sol belerang dengan menggerus serbuk belerang bersama zat inert seperti gula pasir, kemudian mencampur dengan air.
2) Cara peptisasi
Cara peptisasi adalah pembuatan koloid dari butir-butir kasar atau dari suatu endapan dengan bantuan zat pemecah (pemeptisasi).
3) Cara busur bredig
Cara busur bredig digunakan untuk membuat sol-sol logam. Logam yang akan dijadikan koloid digunakan sebagai elektrode yang dicelupkan kedalam medium dispersi, kemudian diberi loncatan listrik dikedua ujungnya. Mula-mula atom logam akan terlempar kedalam air, lalu atom tersebut mengalami kondensasi sehingga membentuk partikel koloid. Jadi cara busur bredig ini merupakan gabungan cara dispersi dan kondensasi.


0 komentar: